There is a misperception that Production 3D Printing means 100-1000 parts. Just a solution for bridging the gap between prototypes and injection molding. But this is far from the case. Mass Production 3D Printing is able to be more cost effective than injection molding beyond 100,000 pieces. And in many cases injection molding can never compare. But how is that possible. Let's go through it. Per Part CostOn average a single 3D Printed part is more expensive than a single injection molded part. But but by how much varies widely based on the design of the piece. 3D Printed parts can cost $0.25, $5.50, or 24.50 each. Higher volume makes them cheaper and simpler parts are lower cost to produce. This is really not that different than the per part cost of injection molding when you amortize the mold. Now can 3D Printing ever match injection molding on price with enough volume. Yes it can. Think about the inputs. 3D Printing just needs electricity and plastic to make a finished part. Injection molding needs the same things. At Slant 3D we have worked with many clients where the per part cost has been the same or less than injection molding into the 100,000's of parts. The higher the volume the more efficiently your part can be produced. And a real key difference is that production 3D Printing can be profitable from the first part. Whereas molding has a large up front cost that requires the sales of thousands of units to pay off. Molding is high risk. 3D Printing is much lower risk while still being a similar or better cost. WarehousingRarely when designing a product or looking for a manufacturer do people consider the rest of the supply chain. There is the cost to make the part and nothing else. But 3D Printing really allows for an entirely new supply chain dynamic. With traditional manufacturing it is necessary to make a large quantity of parts in one go. And then ship and store those parts over a long period of time. Ford stores spare parts for their cars for 10-20 years. While it was cheap to mold them warehousing can account for 10-25% of the cost of a product. A simple example would be a simple widget or toy. We will use a product from Angled.io shown below (retails for $19-25). To store this product in an Amazon warehouse would cost between $0.40-1.50 depending on the season. If they do not sell quickly then the warehousing would become about 3-5% of the cost of the product after just a few months. Imagine the carrying costs when you have to hold inventory for years. Compare this to 3D Printing. A part only has to be made when it is ordered. Or in batches over time. There are no large production runs. This reduces warehousing to a fraction of what it was, reduces cash tied up in inventory, and ensures that supply always matches demand. While the per part cost of the part might be higher these saving often more than make up for it. RiskThis is not always considered in monetary terms. But Risk is a big part of a product cost. With molding you have to risk 10,000's of dollars in the cost of the mold before you can even sell your first piece. If people just don't want to buy it, then you will lose your entire investment. 3D Printing allows you to test the market. Even at very low volume (<100) you may be profitable or at least break even on each unit. And then as you grow your margins widen. But if the product doesn't sell you lose only hundreds of dollars not thousands. 3D Printing is exceptionally low risk because no part has to be made until it is sold. This is the fundamental premise of services like Angled.io ReliabilityWhat is the cost of a delay or a shutdown. This is now known from covid, when manufacturing and shipping shut down. Local options became attractive. But even at that level traditional manufacturing is very fragile. Most injection molding companies run 1-10 large machines making parts. If a machine breaks down, or even a operator goes home sick, a large percentage of capacity can go down and parts will be delivered late. Production 3D Printing farms are made up of hundreds of individual units. If a single one of them fails it makes no difference in production because there are ten waiting to replace one. This makes production 3D Printing farms exceptionally reliable. Saving cost on shutdowns or delays from that single point of failure that traditional manufacturing suffers from. ConclusionSo the short answer is yes, 3D Printing can produce millions of parts for the same or less cost than injection molding. Largely through the savings that it brings about up and down the supply chain from reduced risk and reduced carrying costs.
Hopefully this post has made that a bit more clear. 3D Printing is able to operate at scale without up front risk or long term shutdown issues. During the entire pandemic, Slant 3D never shut down. Our factories are too automated and efficient to require it. Our clients were able to continue to receive products instead of being caught in the limitations of overseas molding and storage.
1 Comment
Up until about 10 years ago, if you wanted to manufacture a product the process would look something like this
And this system has worked. It is why we have cases for our iphones. Why there are more clothes in the world than anyone can deal with. And why about 90-99% of hardware product-based businesses fail in the first 3 years. In order to get rich making stuff you have to already be rich. The barrier to entry in manufacturing has been very high. You have to buy engineering skill, buy the molds, pay for storage of the parts, all before you even sell one. Compare this to what Zuckerberg did with a laptop in a dorm room on a weekend. All he had to invest was his time. Can manufacturing ever be like this? With 3D Printing it already is. Let's take a look at manufacturing a part with mass production 3D Printing at Slant 3D (other production 3D Printing companies follow a similar process).
The reason this is all possible is because 3D Printing does not have any tooling. Each part is grown from just the raw material. There are no stamps or significant setup. It is a digital process. All we need to make a part is a 3D model of the part. Basically you go from idea right to production. Now many people question the scale of 3D Printing. That is, how many parts can it actually produce at a time. That question really depends on the part. But let us us try to break it down a bit. On a cost basis 3D Printing is generally cheaper than injection molding up to about 100,000 pieces. So if you are making more than that a mold should be considered. If you are making fewer than that 3D Printing is likely the #1 choice. As far as the ultimate quantity, our Print Farm Beta facility is able to produce between 30-80,000 pieces per week, and that number continues to increase. Though again this really depends on the part. Print time and complexity can all affect this. A bigger piece is more expensive than a small piece. A Carbon Fiber Nylon piece is more expensive than something made from PLA. And 100,000 pieces will be produced more cheaply per unit than 1000 pieces. The best way to find out for sure is to get a quote. Quoting is free and you can use the information to compare to other manufacturing options. And your project engineer will work with you get reduce the cost and improve the product. So how is a final product manufactured with mass production 3D Printing? And more importantly what is the development process leading up to final production. Well, there are a few steps. Mainly there to ensure that the final product is within spec for the client. Mass Production 3D Printing offers much more control and variation than traditional processes. And since it is relatively new there are areas that we think it is important that a client understand early on which can reduce cost and provide amazing new opportunities if utilized. With this post we hope to outline the general process and why it exists, and give mass production 3D Printing clients a "look behind the curtain" If the title is not clear enough this post focuses only on the process of mass production 3D Printing. Which is generally longer and more intensive than prototyping 3D printing. If you just need a part made quickly for testing we recommend going to our prototyping service Twist 3D Printing Submit a 3D Model3D Model TypeThis sounds simple but can be confusing, mainly because there are dozens of 3D model formats. And what is submitted might have limitations. When we request a 3D model we prefer a .STEP, .STL, the original CAD, or a .OBJ file. And if you are sending a zip a dimensioned drawing with critical tolerances is nice icing on the cake. A .STEP file is the strongest because it is immediately editable, and contains accurate dimensional information. It is pretty much the universal 3D model file. And the editability is also great because we can quickly implement slight modifications that do not change the function of the part but improve its manufacturability. Original CAD files can be converted but not always, and they can delay processing of quotes. .STL and .OBJ are often submitted by clients with a history in 3D printing. And these files are fine. But they have no universal units associated with them and can therefore be incorrectly scaled during processing. And since they are generally files that have been developed for 3D Printing they are generally focused toward the machine or process that they were prototyped on. Which means that tolerances may be off for the mass production 3D Printing method. And last of all they are uneditable. So these standard 3D printing files are the easiest to work with but can lead to many problems. The need for a dimensioned drawings ensures that critical features are highlighted and the tolerances associated with them. This helps during the design review. Overall, if you can send one of each file type that is great. If you submit a .STL make sure you provide the dimensions it was created it. Or just submit a .STEP file. If you have all the files to submit place them in a zip file. If you have none of the files requested. Send what you have and we will work through it. But do expect a delayed processing No 3D ModelThis is not uncommon. But a 3D model is required in order to 3D print the product so one must be created. Fortunately we offer a 3D modeling and engineering service, so we can create your model for you. Our team can create anything from engineering models to creative character modeling. 3D Modeling is billing at an hourly engineering rate. The advantage of our team is that they are able to optimize your part for mass production 3D Printing, speeding up the process down the line. If you are still indeterminant about what the final production process will be, then we do recommend hiring an independent design firm. Because our team's expertise is focused on 3D Printing, therefore should that not be the ideal avenue we might not have "all the tricks" for converting your model over to something like an injection molded format optimally. We are specialists and not explicitly a design firm. Detailed SpecsWhen submitting a part there is always an option to "elaborate" on it its function and specs. While it is optional, due to confidentiality reasons, we highly encourage completing it for engineering and economic reasons. The more we know about your product and what it needs to do to function, the more we can help by offering advice about optimization and good design for additive manufacturing so you get the most bang for your buck. Intellectual PropertyAny file submitted to Slant 3D is kept confidential and will not be shared outside of the organization. Any employee of the company is required to sign an Non-disclosure agreement upon hiring covrting all projects within the company that they may interact with. That company NDA is enforced upon all employees. But we will also sign NDA's put forward by clients. If you would like to have a 3rd party NDA signed before submitting files please either contact us first or send your NDA to info@slant3d.com The Quote for Your Mass Production 3D PrintingOnce a file is submitted to use it is forwarded one of our design engineers. These people have some of the most in depth knowledge of mass production 3D Printing in the industry. We know this because Slant 3D operates the largest 3D Printing farms in North America. Once assigned the design engineer will be with your from the beginning to the end of your project and they will be the main point of contact. Price QuoteThe first thing that engineer does is quote your part. This will include slicing it and receiving estimates of material use and print time. The engineer will then use their expertise to optimize the process as much as possible at this stage and give a reasonable estimate. The design and features are then fed to our quoting system which takes into account dozens of features about the part including capacity available, lead time, rejection rate, and of course material and print time to create a final estimate. But we do want to emphasize that we do not always agree with the final quoting system. Design of a product and the optimization of it is a process that is so broad that there can be exceptions that our automated system can't deal with. That is why the design engineer is there, and we don't use a fully automatic quoting system. A good engineer can spot things that a computer can miss. And that leads to our next component Design ReviewWhile the engineer and system are restricted to your design when quoting they will make design suggestions when the quote is delivered. 3D Printing is a new and often foreign process so we want to make sure that clients are able to utilize our expertise in the field to get the best result. There is no reason to hire a service if that service cannot lead to a more optimal solution. So the engineer will offer modifications that can improve price, functionality, appearance, and manufacturability. These might be as simple as reminding a client that the best way to design for FDM production is to "Minimize surface area and don't worry about volume," an idea that is counterintuitive to those with a history in injection molding, to more detailed ideas such as adding specific features. The design engineer will also have the expertise to implement those design changes if necessary. But this part is why it is so important to provide as much information about the function and critical features of the parts at submission. Without that information the engineer is not able to make optimal suggestions quickly. It is entirely possible that they could suggest something as simple as a different material to dramatically improve the economics. But if they don't know the function of the part then they must defer to the client entirely. Because the last thing we want to do it slow the process by changing your product. But we do think it is important to make our expertise available in every way possible. When the quote and design review are sent over to you that is the first step of what will likely be an iterative process. Ideally the client will be able to implement any design notes that the design engineer offered and have the parts requoted. SamplingSampling is part of the process that we consider very necessary in order to ensure that reality match expectations. Again mass production 3D Printing is quite new and we want to be certain that client are getting what they want. Rough-cut SampleA roughcut sample is a piece that has not been optimized for production. That means that it is not final and is not representative of the final product. So why do them? Well we use roughcut samples as a quick and often free way to illustrate a challenge with the part that the client should be made aware of. For example, it may show how support material could be converted into a functional feature of the part with a redesign. Though we are often hesitant to create roughcut samples, because clients often misconstrue them as representative of the final product, and they are not meant to be. For example, while highlighting a feature like support material usage a roughcut sample might be made with a large layer height for the sake of speed. But the client might assume that the large layer height is somehow part of the final product as well, which it most certainly isn't. So we are cautious because these quick and dirty pieces can create confusion. Photo SampleShipping Time and cost can delay a project. And often mass production 3D Printing is used to shore up a leak in the manufacturing a supply chain. Much like in the beginning of the covid-19 pandemic. So to expedite this we can do photo samples. These pieces are production ready prints of the part which are photographed in our studio to highlight every critical feature of the part. Some include caliper measures and color comparisons. While not the same as holding a part these samples are quite common and can create some ease of mind when a part is ordered in a rush. Regular Sample/Production PrototypeOf course we do these. But we call them a production prototype. Therefore a fee is applied that is a prototyping fee. At this stage we go though the full optimization process. It might include several iterations on the part finding the optimal process and tweaking tolerances. This is not a push-button part of the process. Therefore it can be quite expensive. While 3D Printing is most certainly more flexible than injection molding it is incorrect to assume that there is not still a setup process for a new part or product to make it just right. The cost of a sample is the standard setup fee, plus shipping, plus the cost of the prototype of that part at the prototype quantity. Often these will be included in the first quote you receive. Quality Control From SamplesThere is a lot of possible variation in 3D Printing. There are different processes and an infinite control of part material behavior. Depending on application there is also a broad variation of requirement from clients. A bracket might not need to look good, but a vase must be immaculate. But those words are not quantifiable. Many clients will use "good surface finish," but that phrase can have wildly different interpretations based on their backgrounds. Therefore we have adopted the "Eye Doctor" QC method during sampling. In most cases with new clients we will send multiple iterations of the same part to the client for them to evaluate. Some will be blatantly bad, some will be "immaculate." (Particularly in the area of appearance, tolerances after all are very cut and dry. "Look good" doesn't mean anything to an engineer.) When the client receives these samples we will use their feedback to establish a QC checklist that will be used during post processing in production to verify that parts are up to spec during production. This checklist might evolve and become more narrow overtime. Unfortunately there are not currently universal engineering standards within the additive manufacturing sector. So this has been the best method we have to ensure that we meet the clients standards when each client is different, and the technology is incompletely understood or designed for. In-House SamplingThe quickest way to create a sample is to print it yourself and iterate until your have what you want. That eliminates shipping, and Slant 3D providing iterations to choose from. It can also be very fast since shipping and communication lags are eliminated. The reason it is not general practice is because no 3D Printer or process is created equal. And there are costs in the machine itself as well as skill of operation. We have years of experience, your company may only use it causally. But we have fixed this problem with our Mason 3D Printer. The Mason is a prototyping machine. But one that leads directly to production with no intermediate steps. Anything made on a Mason is identical to what will come out of our 3D Printing farms. This dramatically speeds up sampling because the client can do it themselves. And if they do not have expertise in a particular area your design engineer can prepare an iteration of the part and email it you to print on your Mason. So you get our experience and one of our machines to work with in your facility or business. Our clients who use this model often have many products (such as in a toy company) or designs which change dynamically (such as factory tooling). Adjustment of the Quote after SamplingAs we have said the creation of the production sample is an iterative process. There is experimentation that can reveal problems with the piece that were overlooked during the digital quoting and evaluation process. Therefore after a production sample is made and evaluated the quote made need to be adjusted, either from features we find or from client feedback. Very often the design itself will change after samples are created. And every time the design changes the quote must be updated as well. ProductionSo the part has been submitted, the design has been optimized. The Sample has been approved. Now we are ready to actually make thousands of parts and really utilize mass production 3D Printing. PaymentThe payment method and structure will be decided during the quoting process. Generally it is quoted as payment upon order if the order is under a certain dollar amount. But that is flexible based on size of the order and the structure of the contract. 50% down and Net30 are common. Note: The setup fees are applied anytime a design is changed or a production context changes. So the setup fee is billed at sampling and at production. We Make the PartsNot much to say here. We make the number of parts requested with the same specs as the approved samples. We do this by using fleets of 3D Printers. ShippingShipping can be done a number of ways. The most common are shipping in batches, just in time, and bulk shipping. Batches are generally the fastest way to get parts, but can increase shipping costs. But this method can allow for the payment on delivery contract that spreads out expense over a longer period of time and allows for tighter control and iteration in between shipments. Remember 3D Printing allows for a design to be changed during production without a big uproar, just a refreshed setup fee. Just in Time is often partnered with Slant 3D's fulfillment capabilities. When an order is made we are notified though a number of means and the part is printed and shipped. This can also include warehousing of inventory or just digital inventory. This is optimal for spare parts and high margin businesses where the cost of the single part can be higher. Bulk Shipping, is just like injection molding. We make 100,000 parts and send them to you on a pallet. The Baker's Dozen Rule3D Printing is new. Things are overlooked and sometimes problems can slip through. Therefore at Slant 3D we have a "Baker's Dozen Rule" where we intentionally overproduce on nearly every job to make sure that there are spares and replacements. Just in case. We Guarantee Our PartsOnce a sample is approved and we have shipped those parts we are responsible for those parts to your doorstep. If they are damaged in transit we will replace them. If they are not up to the specs outlined and agreed upon we will replace them. A supplier should not require oversight. The reason a company uses a supplier is because they think the supplier can do the job better then they could. If we can't then it should be taken inhouse. If we screw up we own it and pay for it. Conclusion
As the pandemic continues to drag on, we are seeing more and more depression partially from the imposition of current masks. They are uncomfortable, and they really hinder interaction. But the team at TrueContour lead by Jonathan Swartz are looking to change that.
The TrueContour Mask is a fully custom and transparent protective facemask. So it fits to your face perfectly and allows other people to still see you. This not only improves protection from the better fit, but it also improves interaction and human connection, something that seems to be waning with current masks and work at home trends.
The TrueContour is manufactured through a number of steps. First the customer scans their face using the TrueContour app on a iPhone. This scan is then converted into a 3D model that is used as a mold for the mask.
Slant 3D has partnered with TrueContour to produce these molds on demand as orders come in. Our 3D Printing farms, composed of hundreds of 3D Printers, ensure that demand will never outstrip production capacity. Once the molds are 3D Printed, then the masks are vacuum-formed and final processing produces the final mask.
This design and method of manufacturing is brilliant. True contour is fixing many of the primary problems with current masks by improving the seal and just allowing people to not look like a bank robber everywhere they go.
They are also taking advantage of a perfectly flexible supply chain brought on by Production 3D Printing and lean manufacturing principles. They will never have excess inventory and will be able to produce perfectly custom items quickly and on demand. We are very excited to be working with such a great and forward thinking company. Reduce the Cost of International Shipping by Teleporting Parts Via 3D Printing The internet has allowed the sale of products to anyone in the world. Whether those be consumer or industrial products. But that access is ruined when the products have to cross borders or oceans. Shipping a crate overseas then paying tariff and warehousing fees significantly increases the cost of a product to the end-user. Wouldn't it be great if Parts and products could be "teleported" to the destination country with just an e-mail to save those shipping costs. With Production 3D printing that is possible. 3D Printing allows 3D models to be emailed and manufactured anywhere in the world. The trouble has always been there has never been a formal entity that can print your parts in the country where they are to be sold and ensure they are shipped to customers. 3D Printing services like Slant 3D allow products designed in one country to be produced and fulfilled in another country without the cost of shipping. And Slant 3D can hold your model in our digital inventory and produce it only when it is needed. How it Works
By using Slant 3D you can take your product international and not have to deal with international shipping costs. And you have the huge production scale of Slant 3D. So you know that when demand rises we are able to back you up. This is a great resources of companies and entrepreneurs outside of the United States to send their production to the US without the high cost of shipping. 3D Printing is quickly becoming a best option for production of plastic parts. You have little-no inventory. You can send your parts anywhere in the world for free, and you are able to grow without any high up-front investments. Who is Doing It.Slant 3D already doing this with dozens of companies and entrepreneurs. They include companies like Uncommon, a project call Part Mason, and Etsy stores such as BakersStreetCuters. All of these products are manufactured and fulfilled from Slant 3D. But most of them are designed outside of the United States
3D Printing is increasingly being used by businesses. And it is not just being used for prototyping. The ability to iterate on products and create complex geometries are both enticing to create parts at production scales. And with technologies such as our Production 3D printing Farm, large scales are feasible. But during the design and prototyping stage sampling, verfication, and design can increase up-front costs to create a 3D printed product. That is why we created the Mason 3D printer for businesses The Mason is a 3D printer derived from the production 3D printers used in our large scale 3D printing farm. Because of that, any part made on the Mason will be identical to the parts coming out of the Slant 3D Printing Factory. This means sampling is no longer necessary. Clients only need to make a prototype on the Mason that is up to Spec, and then thousands more can immediately be produced with identical settings and characteristics on the Slant 3D farm. Prototype to production with no steps in between. There only leaves the problem of getting those settings right on your prototype. Design for production 3D printing is an entire discipline, and very few truly understand how to optimize a part for large volumes. And while the machines may be identical from prototype to production, materials could vary if the client is using a spool of filament off of Amazon.
So to standardize the workflow completely. We created OnSite. Onsite is program that connects a Mason 3D printer directly into Slant 3D. An Onsite Subscription provides stardaized materials and access to profession file preparations and optimization. So every variable is eliminated in the prototype stage. Mason+Onsite gives you completely final production-ready prototypes. Not to mention machine insurance, discounted setup, zero sampling costs, and low cost high quality filament. With the Mason 3D printer combined with an Onsite subscription we have made is possible for businesses to create, and quickly scale 3D printed products as easily as a software company might make an app. 3D Printing is becoming a common method for producing parts and toys by small independent creators all over the world. These people often maintain several printers in their home or shop in order to make the products that they have created. But if you are just starting out or trying to grow, the time and expense of your own personal 3D printers can make them prohibitive. Personal printers often cost $500-$3000 which, for a small cottage business is a high startup cost. But with production 3D printing you can just upload you models and have your manufacturer hold them in digital inventory. That is, there is a onetime preparation fee, and then the part is ready to be printed forever. When an order comes in it is pushed to the manufacturer who will access the digital file and print the design. And since companies like Slant 3D support dropshipping you can enter into a monthly plan where you pay a flat fee for each shipment and have Slant 3D print and ship the part only when it is ordered. This means you can create a business for basically zero upfront cost, and only pay the cost of manufacturing on a per-part basis. It is a lot like posting an app to the Appstore. You just create a digital design and it is copied when the design is ordered. An Alternative method to operating on a small scale is to order inventory in small quantities for you to hold and then ship, like a traditional retailer. Again the design would be held in "digital inventory" by Slant 3D, and when you need 10-100 pieces for your stock you just send a message and the pieces will be printed and shipped to you within a few days.
And whenever you want to grow you business or add new products, you basically just send an e-mail. No more affording, maintaining, and operating your own printers. Just design great products without having to pay for them until they sell. |
Featured Posts
Categories
All
Archives
March 2023
|